Lab Osmosis And Diffusion

Diffusion/Osmosis
December 19, 2019
The Skeletal System
December 19, 2019

Lab Osmosis And Diffusion

Lab Osmosis And Diffusion

Introduction: Connecting Your Learning

The basic building block of life is the cell. Each cell contains several structures, some of which are common to both eukaryotic and prokaryotic cells and some that are unique to specific cell types. This lab will discuss cell structures and how materials are moved in and out of the cell. Specifically, the principles of diffusion and osmosis will be demonstrated by performing a scientific investigation that studies the effect of salt concentration on potato cells.

Focusing Your Learning

Background Information

In 1662, Robert Hooke investigated the properties of cork when he discovered cells. He named them after small rooms in a monastery because they reminded him of them. Years later, in 1837, Schleiden and Schwann were attributed with developing the cell theory. While their original theory was modified, the fundamental ideas be- hind the theory held true. Three general postulates are included in the cell theory: 1) All organisms are composed of cells. 2) The cell is the unit of life. 3) All cells arise from pre-existing cells.

Because a cell is the basic building block of living things, it is important to become familiar with its characteristics. Several structures comprise a cell. Many of these structures are visible with the use of a standard compound microscope. Below are pictures of idealized plant and animal cells, illustrating the important structures.

The cell membrane encloses all cells and is responsible for separating the internal en- vironment from the extracellular space (the space between cells). Because other struc- tures within the cell are also surrounded by a membrane, the outer membrane is of- ten called the plasma membrane.

10/1/13 10:29 AMBIO156 – Lab 4

Page 2 of 11https://www.riolearn.org/content/bio/BIO156/BIO156_INTER_0000_v…b04.shtml?encrypted-sectionid=Z0RiRVE3bkZMRnd4WmZJc2doQjNnZz09

The cell membrane is semi-permeable, allowing cer- tain molecules to enter into the cell freely, while oth- ers are prohibited from entering the cell. It is com- posed of phospholipids, which have a head consist- ing of a phosphate group and a tail of two fatty acid chains. The phosphate group is attracted to water

(hydrophilic) while the fatty acid chains are repulsed by water (hydrophobic). When in water, the properties of the phospholipids cause them to form two layers: The hy- drophobic tails face the inside of the double layer (away from the water), and the hy- drophilic heads face out (toward the water). Because two layers are formed, the mem- brane is made up of a phospholipid bilayer, as seen in the image.

The cell wall surrounds the cell membrane in plant cells, bacteria, and some fungi. In plant cells, the cell wall is composed of cellulose. In bacteria, the wall is made mostly of polypeptides (protein) or polysaccharides (carbohydrates). The cell wall provides support and protection and is responsible for giving plant cells their shape.

Another important structure found only in eukaryotic cells is the nucleus. This struc- ture contains the genetic information and is the control center of the cell. Protecting the nucleus is a double-membrane called the nuclear envelope, which, like the plasma membrane, is semi-permeable. It is important to note that although prokaryotes lack a nucleus, they still contain genetic information.

Within the nucleus is the nucleolus. This is the site where ribosomes are formed. Ri- bosomes function to assemble proteins. Many cells have multiple nucleoli, which con- tain concentrated areas of DNA and RNA.

Flagella (singular is flagellum) is Latin for whip. Flagella are whip-like projections of- ten found in prokaryotes, eukaryotic single-celled organisms, and some specific cells (like human sperm). These structures extend beyond the cell membrane and cell wall and are used for locomotion (movement). Although flagella are found in both eukary- otes and prokaryotes, the structure of the flagella is different for each cell type.

Cilia (singular is cilium) are structurally similar to eukaryotic flagella but are smaller and more hair-like. Cilia are found in some eukaryotic organisms. Some cilia are used for locomotion, as in the single-celled paramecium. In other organisms, the cilia act as

10/1/13 10:29 AMBIO156 – Lab 4

Page 3 of 11https://www.riolearn.org/content/bio/BIO156/BIO156_INTER_0000_v…b04.shtml?encrypted-sectionid=Z0RiRVE3bkZMRnd4WmZJc2doQjNnZz09

a filter. Sometimes, cilia are used not to move the cell itself, but to move objects through a cell (akin to a conveyer belt).

Vacuoles are specialized organelles that are responsible for storing starch, water, and pigments. They also act as a repository for metabolic wastes. Some plant cells contain a large, central vacuole, which occupies almost the entire cell. Central vacuoles are re- sponsible for providing support, which is based on the amount of water or pressure against the cell wall. If too much water is lost in the central vacuole, a plant will lose its support and appear to droop.

Centrioles are found in all animal cells and some plant cells. These structures, which occur in pairs, are responsible for the cytoskeleton. The cytoskeleton is composed of microtubules, microfilaments, and intermediate filaments. It is with these long struc- tures that the cytoskeleton provides support, maintains the cell shape, and anchors the organelles. The cytoskeleton is also used for moving structures or products.

Within eukaryotes is an endomembrane system. In this system, the endoplasmic retic- ulum, which consists of a membrane that forms folds and pockets, connects the nu- clear envelope, the Golgi apparatus (or Golgi complex), and cell membranes. This system is often called the factory of the cell because each of the individual organelles contributes to the production and delivery of proteins, lipids, and other molecules.

The nucleus contains the blueprints for proteins. These plans are then passed to the rough endoplasmic reticulum (RER). This structure is composed of several folds of a membrane and is covered with ribosomes (these bumps are why it is called rough en- doplasmic reticulum). Once the ribosomes receive the plans, the protein is built. Some proteins will move to the Golgi complex. Other proteins will move to the smooth en- doplasmic reticulum (it is called smooth because it lacks ribosomes). These proteins instruct the organelle to build other molecules, such as lipids and carbohydrates. Like some proteins from the RER, some of these molecules will move to the Golgi com- plex.

The Golgi apparatus is the central post office area of the cell. It receives the products of the rough endoplasmic reticulum and smooth endoplasmic reticulum, packages them, and ships them to their intended destination.

Another structure found only in photosynthetic cells is the chloroplast. This special- ized structure belongs to a class of membrane-lined sacs called plastids (like the vac-

10/1/13 10:29 AMBIO156 – Lab 4

Page 4 of 11https://www.riolearn.org/content/bio/BIO156/BIO156_INTER_0000_v…b04.shtml?encrypted-sectionid=Z0RiRVE3bkZMRnd4WmZJc2doQjNnZz09

uole). The chloroplast contains pigments and is responsible for creating food through photosynthesis.

Eukaryotic cells contain an organelle called the mitochondria, which is the site of en- ergy production. This structure is often referred to as the powerhouse of the cell. Cel- lular energy is stored in the form of adenosine triphosphate (ATP).

The ability of a cell to absorb water and nutrients is an important aspect of its sur- vival. Diffusion is the movement of solutes (dissolved molecules) in a solution or ma- trix from an area of high concentration to an area of lower concentration. Molecules move down the concentration gradient: from an area of high concentration to an area of low concentration. The greater the concentration differential, the faster the rate of diffusion. The size, shape, and composition of the solute also affect the ability of a substance to diffuse. These factors become increasingly important when considering the diffusion of substances across the cell membrane. Diffusion, being a passive process, is quite efficient across small distances. However, as distances become longer, the efficiency of diffusion decreases.

Osmosis is the movement of water across a selectively permeable membrane from an area of lower concentration (of solute) to an area of higher concentration (of solute). Remember that everything in the universe is constantly moving toward a state of equilibrium. Living cells contain a small amount of salt. For example, human cells contain 0.85% NaCl. If the solution outside the cell has this same concentration, the solution is said to be isotonic. Because there is no net difference in solutes between the inside and outside of the cell, there is no net movement of water. Higher concen- trations of solutes outside of the cell are termed hypertonic, while lower concentra- tions are termed hypotonic.

An important concept that affects how well a cell can absorb and pass material through the membrane is the surface-to-volume ratio. This formula for calculating this ratio is:

Surface area ÷ Volume

Because cells constantly interact with their external environments to obtain nutrients and remove wastes, it is critical that they maintain a proper surface-to-volume ratio.

As objects of the same shape increase in size, the surface-to-volume ratio decreases.

10/1/13 10:29 AMBIO156 – Lab 4

Page 5 of 11https://www.riolearn.org/content/bio/BIO156/BIO156_INTER_0000_v…b04.shtml?encrypted-sectionid=Z0RiRVE3bkZMRnd4WmZJc2doQjNnZz09

For example, suppose there are two cubes. Cube 1 is 1 cm x 1 cm x 1 cm, and Cube 2 is 10 cm x 10 cm x 10 cm. To calculate the surface-to-volume ratio, the formula for de- termining the surface area (SA) of a cube (length x width x number of sides) and the formula for the volume (V) of a cube (length x width x height) must be known. Once the formulas for calculating surface area and volume of a cube are known, the surface area to volume ratios can be calculated, as seen below.